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Abstract 
Schizophrenia (SCZ) is a severe mental disorder that greatly impacts society. This article looks at the neurobiological 
mechanisms of SCZ, including abnormal NMDA receptor function, changes in glutamate levels, and genetic influences like 
DTNBP1 and NRG1, which lead to cognitive impairments and episodes of psychosis. Stem cell therapies show promise in 
addressing neurodevelopmental and neurochemical issues in SCZ, aiming to promote neurogenesis, improve myelin 
formation, and enhance synaptic functions. Gene editing techniques, such as CRISPR, could tailor treatments by correcting 
genetic mutations. However, challenges such as cell integration issues, immune responses, and regulatory hurdles remain, 
underscoring the need for further research to improve and implement these therapies for more effective and personalized 
care. 
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Introduction 

Schizophrenia (SCZ) is a serious psychiatric disorder 
that affects about 1% of the worldwide population [1]. 
Though its occurrence is relatively rare, it has a 
significant impact on both individuals and society due 
to its debilitating characteristics. The condition is 
marked by various symptoms, including 
hallucinations, delusions, disorganized speech, 
chaotic behavior, cognitive deficits, and negative 
symptoms like diminished emotional expression, a 
flat affect, and reduced motivation. These obstacles 
often lead to challenges in sustaining relationships, 
holding jobs, and living independently, which can 
result in social isolation, impaired functioning, and a 
heightened risk of early death [2-4]. The effects of SCZ 
also affect caregivers, who frequently endure 
considerable financial pressure due to healthcare costs 
and repeated hospital stays. The requirements of 
caregiving can restrict job prospects, leading to a 
decrease in household earnings, while the emotional 
stress, characterized by anxiety and burnout, adds to 
their difficulties. Stigma additionally marginalizes 
caregivers, resulting in a lack of support, which creates 
a dual challenge of financial and social difficulties that 
underscores the wider societal consequences of the 
disorder [5-7]. From a broader perspective, SCZ 
significantly contributes to the global disease burden, 
resulting in healthcare costs and decreased 

productivity that strain economic systems [8, 9]. The 
disorder typically presents itself during late 
adolescence or early adulthood, with genetic 
predispositions and environmental factors like 
prenatal stress, childhood trauma, and cannabis use 
playing key roles in its development [2-4, 10, 11].  
In individuals with SCZ, a prodromal phase is present 
in 80-90% of cases, characterized by a gradual 
emergence of less severe or sub-threshold symptoms 
[10-13]. These initial symptoms are thought to fall 
along a spectrum that leads to the full development of 
delusions and hallucinations commonly associated 
with the condition. The differentiation between the 
prodromal phase and psychotic episodes occurs when 
these symptoms become more frequent, widespread, 
and debilitating, causing the person to lose awareness 
of the false nature of their beliefs and experiences [2-
4, 10-13]. While the length of this phase can differ, it 
usually lasts around a year. More than half of those 
diagnosed with SCZ suffer from several comorbid 
mental and physical conditions, making the treatment 
and care processes more complex [14, 15]. The 
roughly 60% concordance rate for SCZ among 
monozygotic twins underscores the significant impact 
of environmental factors in determining how genetic 
vulnerability manifests in this disorder [16, 17]. 
Various environmental influences, including 
childbirth complications, early-life challenges, urban 
upbringing, and migrant background, are believed to 
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interact with genetic tendencies to heighten the risk 
of developing SCZ [18]. The neurodevelopmental 
hypothesis of SCZ suggests that an interplay of genetic 
risks and environmental factors during the early stages 
of brain development sets the groundwork for the 
emergence of symptoms in early adulthood. These 
factors, especially prominent during the prenatal and 
early years, emphasize the vital need for early 
interventions and comprehensive approaches to 
alleviate the effects of SCZ on individuals, families, 
and society [19, 20].  
The clinical symptoms associated with SCZ are 
generally divided into three categories: positive 
symptoms (such as hallucinations, delusions, and 
disorganized thoughts), negative symptoms (including 
lack of motivation, flat affect, and social withdrawal), 
and cognitive symptoms (like memory deficits and 
challenges with attention and executive function) [2-
4, 10-13]. These symptoms are believed to result from 
changes in brain chemistry, primarily affecting 
dopamine and glutamate neurotransmission. The 
dopaminergic hypothesis posits that heightened 
dopamine activity in the mesolimbic system 
contributes to positive symptoms, while diminished 
dopamine activity in the mesocortical pathway is 
associated with negative symptoms [21, 22].  
Additionally, the glutamatergic hypothesis highlights 
the dysfunction of glutamate signaling, particularly 
through NMDA (N-methyl-D-aspartate) receptors, 
which leads to compromised neural connectivity, 
notably in the prefrontal cortex. This dysfunction is 
thought to contribute to cognitive impairments. 
Together, these theories offer a framework for 
comprehending the intricate neurobiological 
foundations of SCZ, involving both disrupted 
dopamine and glutamate systems that affect various 
brain regions and their functions [23, 24]. SCZ is a 
chronic illness that necessitates continuous care, even 
when symptoms show improvement. Although there 
is no definitive cure at this time, a combination of 
medication and therapy is crucial for managing 
symptoms [25, 26]. Antipsychotic medications, which 
play a vital role in treatment, mainly affect 
neurotransmitter functions in the brain, with a 
particular emphasis on dopamine and serotonin 
receptors. These drugs are thought to ease symptoms 
by normalizing the activity of these key 
neurotransmitters, which have an impact on mood, 
cognition, and perception [27, 28].  
In some instances, particularly if symptoms escalate or 
during a crisis, hospitalization may be required for 

stabilization and close monitoring. It is crucial to 
highlight the importance of adhering to medication, 
as stopping treatment can result in a relapse, even if 
symptoms seem to have temporarily improved. 
Moreover, psychosocial therapy can assist in long-term 
recovery by supporting individuals in coping with 
their condition and enhancing their overall quality of 
life [29, 30]. While existing treatments for SCZ mainly 
aim to reduce symptoms without offering a cure, 
emerging research is beginning to investigate 
potential breakthroughs that could transform both 
neuroscience and psychiatry. One of the most 
promising directions is stem cell therapy, which may 
provide a curative option rather than remaining 
purely theoretical. Given their capability to 
differentiate into diverse cell types, stem cells might 
contribute to the repair or replacement of damaged 
neural circuits associated with the disorder. This 
strategy could tackle the fundamental biological issues 
related to SCZ, leading to more effective and 
enduring treatments that prioritize recovery over mere 
symptom management. As progress in this field 
continues, stem cell-based therapies might ultimately 
deliver true hope for a real cure, significantly changing 
how SCZ and other neuropsychiatric conditions are 
addressed [31-33].  Against this backdrop, this article 
aims to provide an in-depth analysis of the 
mechanistic insights and innovative developments 
that highlight the potential of stem cell therapies as a 
revolutionary approach to treating SCZ. It 
underscores the promise of early intervention 
strategies, utilizing stem cell-based methods to address 
the condition in its initial stages, guided by new 
understanding of the disease's early signs and 
fundamental biology.  

Schizophrenia: Pathophysiology and 
Underlying Mechanisms  

SCZ is a multifaceted disorder with a complex 
pathophysiology that continues to challenge 
researchers [1-4]. Decades of investigation have 
revealed that its origins involve numerous genetic and 
neurobiological factors, many of which remain to be 
fully elucidated. Genetic studies have highlighted the 
highly polygenic nature of SCZ, implicating hundreds 
to thousands of distinct genetic loci [34-36]. Genome-
wide association studies (GWAS) have uncovered 
over 100 specific loci, each with varying effects, 
underscoring the disorder's genetic complexity [37, 
38]. Interestingly, these genetic risks demonstrate 
significant pleiotropy, meaning that certain genetic 
variants are shared across other neuropsychiatric 
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conditions, including bipolar disorder, major 
depressive disorder, and autism spectrum disorder 
(ASD) [39, 40]. Among the key neurotransmitter 
systems implicated in SCZ, dopamine has long been 
recognized as central to the manifestation of psychotic 
symptoms. The dysregulation of dopaminergic 
signaling, influenced by genetic predispositions, plays 
a pivotal role in shaping the disease's clinical 
presentation [21-23]. Prominent candidate genes 
linked to SCZ include COMT (catechol-O-
methyltransferase), DISC (Disrupted-in-Schizophrenia), 
RGS4 (Regulator of G-protein signaling 4), PPP3CC 
(Protein Phosphatase 3 Catalytic Subunit Gamma), 
ZDHHC8 (Zinc Finger DHHC-type 
palmitoyltransferase 8), AKT1 (AKT 
Serine/Threonine Kinase 1), and α7nAChR (Alpha-
7 Nicotinic Receptor Genes), among others [41-43]. 
These genes are associated with various regulatory 
mechanisms, such as synaptic plasticity, intracellular 
signaling pathways, and neurotransmitter 
metabolism, particularly involving dopamine [44, 45].  
Notably, the Dystrobrevin Binding Protein 1 
(DTNBP1) and Neuregulin 1 (NRG1) genes have 
emerged as especially compelling candidates due to 
their robust associations with SCZ in multiple studies 
[46-48]. Both genes are integral to synaptic function 
within the central nervous system (CNS), with 
particular importance in modulating glutamatergic 
neurotransmission. Glutamate, alongside dopamine, 
is increasingly recognized for its role in the 
pathophysiology of SCZ, contributing to cognitive 
and perceptual disturbances [49, 50]. Research into 
the functions of DTNBP1 and NRG1 has revealed 
their influence on neural circuit development and 
synaptic maintenance. For instance, DTNBP1 is 
involved in synaptic vesicle trafficking and may 
indirectly regulate dopamine release, while NRG1 
plays a critical role in neurodevelopmental processes, 
such as neuronal migration and myelination. 
Dysfunction in these pathways can lead to 
abnormalities in neural connectivity and 
neurotransmitter balance, hallmarks of SCZ [51-53]. 
While the precise mechanisms underlying these 
genetic associations remain a topic of ongoing study, 
advancements in genomic technologies and 
neurobiological research continue to provide insights 
into how these genes interact with environmental 
factors. Understanding the interplay of these 
elements may pave the way for novel therapeutic 
interventions targeting the underlying molecular 
drivers of SCZ. 

Glutamate, as the primary excitatory 
neurotransmitter in the CNS, plays an essential role 
in normal brain function, particularly in synaptic 
transmission, learning, memory, and neuroplasticity. 
It is the amino acid with the highest concentration in 
the brain, with levels ranging between 5-15 mmol/kg 
of brain tissue, highlighting its prevalence and 
importance [54, 55]. Most synapses use glutamate to 
propagate excitatory signals across neural circuits. 
However, its physiological concentration must be 
finely tuned. Both low and high levels of glutamate 
can have detrimental effects. Excessive glutamate, if 
not carefully regulated, can lead to excitotoxicity—a 
process where overstimulation of neurons causes cell 
damage or death. This mechanism is implicated in 
various neurodegenerative conditions, including SCZ 
[56-60].  In the study of SCZ, disturbances in 
glutamate signaling—particularly involving NMDA 
receptors—have become a crucial focus for research. 
The NMDA receptor, a form of glutamate receptor, 
plays an essential role in enabling synaptic plasticity, 
neuronal communication, and higher cognitive 
functions like learning and memory [61-63]. It 
operates by allowing calcium, sodium, and potassium 
ions to enter the postsynaptic cell when glutamate 
binds, initiating complex intracellular signaling 
cascades that affect synaptic strength and the 
connections within neural networks. This receptor is 
particularly important for regulating long-term 
potentiation (LTP), which is associated with memory 
formation and cognitive abilities [64, 65].  
The malfunction of NMDA receptors in SCZ disturbs 
the balance between excitatory and inhibitory 
neurotransmission, particularly impacting GABA 
(gamma-aminobutyric acid) ergic interneurons that 
usually regulate excessive neuronal activity. This 
disturbance leads to heightened excitability in neural 
circuits, contributing to the disorganized thought 
processes, hallucinations, and delusions characteristic 
of the condition [66-68]. Additionally, reduced 
function of NMDA receptors can cause elevated 
glutamate levels, particularly in the prefrontal cortex 
and hippocampus, which may overactivate non-
NMDA receptors, leading to excitotoxicity and 
exacerbating cognitive dysfunction. The deficits in 
synaptic plasticity and neuroplasticity associated with 
NMDA receptor dysfunction are correlated with 
structural alterations in the brain, such as reduced 
gray matter volume in critical regions [69, 70]. To sum 
up, SCZ is influenced by both genetic and 
neurobiological factors, with dysfunctional NMDA 
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receptor activity being central to the condition. 
Disruption of glutamate signaling interferes with the 
balance between excitatory and inhibitory signals, 
resulting in symptoms such as hallucinations and 
cognitive impairment. Increased glutamate levels lead 
to excitotoxicity, worsening neuronal injury. Genes 
such as DTNBP1 and NRG1 underscore the 
significance of synaptic functioning and glutamatergic 
signaling in the context of SCZ.  

Mechanisms of Stem Cell Therapy for 
Schizophrenia  

Stem cell therapies present a promising avenue for 
addressing the intricate and multifactorial 
pathophysiology of SCZ. This strategy seeks to 
confront the fundamental neurodevelopmental and 
neurochemical deficiencies linked to the disorder by 
using the regenerative capabilities of stem cells [71-
74]. The ways in which stem cells might provide 
therapeutic benefits for SCZ are diverse and 
encompass several important processes, such as 
reinstating neurogenesis, regulating synaptic activity, 
rectifying immune system imbalances, and facilitating 
precision medicine approaches [75, 76]. SCZ is often 
associated with a reduction in neurogenesis, 
particularly in regions such as the hippocampus and 
prefrontal cortex, which are crucial for memory, 
cognition, and emotional regulation [77]. Stem cell-
based therapies aim to address these deficits by 
introducing neural stem cells (NSCs) or induced 
pluripotent stem cells (iPSCs) into affected areas. 
These stem cells can differentiate into neurons, glial 
cells, and other brain components, replenishing lost 
or damaged cells and potentially reversing cognitive 
and emotional impairments [78-80]. Stem cell 
therapies have the potential to enhance myelination 
issues, especially in disorders like SCZ, where 
disruptions in brain development are associated with 
myelination impairments [81, 82]. Oligodendrocyte 
precursor cells (OPCs), which are the main 
progenitors of oligodendrocytes responsible for the 
formation of myelin, can be derived from stem cells, 
including iPSCs and mesenchymal stem cells (MSCs) 
gathered from human umbilical cord blood (hUC-
MSCs) [83-85]. These stem cells might address 
myelination issues by facilitating the differentiation of 
OPCs into mature oligodendrocytes that can create 
functional myelin sheaths around neuronal axons. 
In the case of SCZ, stem cell therapies could help 
restore typical myelination patterns, particularly in 
areas such as the prefrontal cortex, where myelination 
occurs later in life and often presents deficits in those 

with SCZ [86-88]. By promoting the differentiation 
and maturation of OPCs, these treatments may 
effectively tackle myelination disruptions that arise 
during crucial developmental phases like childhood 
and adolescence. Moreover, stem cell therapies might 
strengthen the integrity of white matter (WM) 
pathways, which are crucial for effective neuronal 
communication [89, 90]. WM, made up of myelinated 
axons, allows for quick signal transmission between 
various brain areas. In cases of SCZ, disruptions in 
white matter integrity can hinder connectivity and 
lead to cognitive deficits. By enhancing the health of 
WM pathways, stem cell treatments could foster 
improved neuronal communication, resulting in 
advancements in cognitive functions and overall brain 
performance [91-93]. One of the main therapeutic 
goals of stem cell-based approaches is to restore 
synaptic function, which is often disrupted in SCZ 
[94, 95]. Synaptic plasticity—the brain's ability to 
strengthen or weaken synaptic connections over 
time—plays a central role in cognitive processes, and 
its dysfunction is a hallmark of the disorder. Stem cell-
derived neurons have the potential to integrate into 
existing neural circuits and form new, functional 
synapses, thereby improving communication between 
neurons. This could repair deficits in synaptic 
plasticity, particularly in brain regions such as the 
prefrontal cortex, which are involved in higher 
cognitive functions like working memory, decision-
making, and emotional regulation [96, 97].  
For instance, a research study conducted by Brennand 
and colleagues employed iPSCs obtained from 
individuals with SCZ to produce neurons in vitro [98]. 
These derived neurons demonstrated deficits in 
synaptic plasticity when compared to neurons from 
control subjects. However, following the 
transplantation of these iPSC-derived neurons into 
the brains of rodents, they successfully assimilated 
into existing neural circuits, established functional 
synapses, and revitalized synaptic activity. This 
integration enhanced communication between 
neurons, indicating a possible mechanism for 
restoring impaired synaptic function in SCZ. 
Scientists also examined the impact of introducing 
neurons derived from NSCs into the prefrontal cortex 
of mice exhibiting symptoms similar to SCZ. The 
findings revealed that the transplanted neurons 
established functional synaptic connections and LTP. 
This recovery of LTP correlated with enhancements 
in working memory and decision-making—cognitive 
abilities that are usually compromised in individuals 
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with SCZ [99, 100]. SCZ is also linked to 
neuroinflammation, characterized by the abnormal 
activation of microglia and elevated levels of pro-
inflammatory cytokines [101, 102]. These factors 
contribute to neuronal dysfunction and cognitive 
deficits. Stem cells, MSCs, and iPSCs have shown 
promise in modulating the immune response [103-
105]. They secrete cytokines and other molecules that 
reduce microglial activation, potentially alleviating 
the neuroinflammation associated with the disorder. 
This immune-modulating effect could help restore a 
more balanced brain environment, promoting 
neuronal survival and function. 
For instance, in a rodent model of SCZ involving 
maternal immune activation (MIA), the offspring 
displayed behaviors indicative of anxiety and signs of 
neuroinflammation, characterized by the activation of 
microglia and changes in synaptic protein levels [106, 
107]. Treatment with human hUC-MSCs 
significantly reduced these symptoms. hUC-MSCs 
influenced microglial function and regulated various 
molecules such as IBA1 (Ionized Calcium Binding 
Adaptor Molecule), HMGB1 (High Mobility Group 
Box 1), and PSD95 (Postsynaptic Density Protein 95), 
facilitating synaptic repair and decreasing 
inflammation [108-110]. These results imply that 
hUC-MSCs could provide a promising therapeutic 
strategy for SCZ by addressing behavioral and 
neuroinflammatory issues. Moreover, stem cell 
therapies may aid in restoring the blood-brain barrier 
(BBB), which is often compromised in SCZ, thereby 
reducing the infiltration of harmful inflammatory 
mediators into the brain [111-113]. Recent studies 
indicate that methods utilizing stem cells, such as the 
transplantation of neural progenitor cells (NPCs), 
may help in restoring the integrity of the BBB by 
enhancing the production of tight junction proteins, 
which are crucial for sustaining the barrier's selective 
permeability [114-116]. For example, research 
conducted on animal models has shown that 
endothelial cells derived from stem cells can enhance 
BBB function and decrease neuroinflammation, 
consequently alleviating the neurovascular 
disruptions linked to SCZ [117-119]. Stem cell-based 
therapies also hold promise for personalized 
treatment through the integration of gene editing 
techniques, such as CRISPR (clustered regularly 
interspaced short palindromic repeats)-Cas9 
(CRISPR-associated protein 9) [120, 121]. SCZ has a 
complex genetic foundation, with several 
susceptibility genes implicated in its onset, including 

DISC1, NRG1, and COMT. Gene editing allows for 
the correction of mutations in iPSCs derived from a 
patient’s own cells, ensuring that the stem cells 
generated are genetically tailored to the individual 
[122-124]. This precision medicine approach not only 
targets the genetic causes of SCZ but also minimizes 
the risk of immune rejection and improves treatment 
efficacy. 
For stem cell therapy to be effective, the transplanted 
cells must integrate functionally into existing neural 
circuits [125, 126]. This requires stem cells to 
differentiate into appropriate cell types and establish 
meaningful synaptic connections with surrounding 
neurons. The long-term survival and proper 
integration of these cells are critical for achieving 
sustained therapeutic effects. Over time, functional 
integration of stem cells into the brain’s networks 
could help restore normal cognitive function and 
alleviate SCZ symptoms, improving both memory and 
emotional regulation. Additionally, stem cells may 
contribute to the rejuvenation of aging or degenerated 
brain regions, enhancing not just cognitive function 
but also emotional and social behaviors. This 
comprehensive approach offers the potential for long-
lasting benefits, promoting the restoration of neural 
circuits and improving the overall architecture of the 
brain, which is foundational for mental health and 
cognition [127, 128]. By combining gene editing with 
stem cell therapy, the root genetic causes of SCZ can 
be addressed in a personalized manner. This approach 
enables the correction of individual genetic 
mutations, enhancing the efficacy of treatments while 
reducing potential side effects. Ultimately, the use of 
gene editing and stem cells may shift the treatment 
paradigm of SCZ from symptom management to a 
curative, individualized approach, offering hope for 
more effective and lasting therapies. 

Stem Cell-based Approaches in SCZ 
Treatment: Challenges and Limitations  

One of the prominent approaches in cell therapy for 
treating SCZ is the implantation of interneurons, 
which has sparked considerable interest as a potential 
treatment method [129, 130]. This process involves 
introducing inhibitory neurons into the brain to help 
restore equilibrium in neural circuits that may be 
disrupted in conditions like SCZ. Interneurons are 
essential for maintaining the brain's excitatory-
inhibitory balance, and their successful integration 
could potentially reduce some of the cognitive and 
behavioral challenges linked to the disorder [131, 
132]. Nevertheless, several obstacles and limitations 
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temper the excitement surrounding these 
encouraging findings. 
One significant challenge is the lack of a clear 
biomarker to assess an individual's likelihood of 
developing SCZ. In the absence of these biomarkers, 
preventive measures like cell transplants encounter 
considerable obstacles to their clinical 
implementation. Furthermore, the effectiveness of 
interneuron transplants relies on a comprehensive 
understanding of how these transplanted cells merge 
with existing neural networks and bring about 
therapeutic benefits. This requires tackling essential 
questions regarding the functional connectivity of 
transplanted interneurons and their capacity to 
properly modulate neuronal activity. Additionally, 
there are considerable scientific obstacles that need to 
be addressed. A primary concern is the potential for 
tumor formation, as transplanted cells might result in 
undesirable growths or cancers, especially when the 
cells are obtained from pluripotent origins [133]. 
Furthermore, regulatory challenges represent another 
significant issue. The lengthy duration required for 
clinical trials, along with the intricate nature of the 
procedures and the necessity for thorough safety 
evaluations, may hinder the application of these 
therapies in clinical settings [134]. Moreover, the 
substantial costs linked to these advanced treatments, 
as well as difficulties in sourcing and maintaining 
adequate quantities of cells for extensive clinical use, 
pose considerable challenges to their widespread 
implementation. Although these obstacles exist, the 
preclinical findings are still quite persuasive. 
Nevertheless, in order to move from experimental 
models to effective therapies for patients, it will be 
crucial to address these scientific, regulatory, and 
logistical challenges. Only after doing so can stem cell-
derived neural transplants be regarded as a practical 
and enduring solution for treating SCZ.  
 

Future directions 

Combining stem cell therapies with innovative gene 
editing technologies has great potential to improve 
SCZ treatment. Future studies should aim to employ 
CRISPR/Cas9 and other gene-editing methods to 
rectify genetic alterations linked to SCZ in stem cells 
derived from patients, offering a possible approach to 
create healthy neural cells and reestablish disrupted 
neural circuits. Precision gene editing could also be 
utilized to fine-tune stem cell differentiation, 
improving the development of specific types of 
neurons or glial cells that are functionally impaired in 

individuals with SCZ. Integrating pharmacological 
approaches with stem cell therapy presents an 
intriguing opportunity for future research. GLP-1 
(Glucagon-Like Peptide-1) receptor agonists (GLP-
1RAs), recognized for their protective effects on nerve 
cells, have demonstrated promise in alleviating 
neuropsychiatric symptoms linked to SCZ [135, 136]. 
Future studies should examine the combined impact 
of activating GLP-1R alongside stem cell therapies to 
enhance both symptom alleviation and neuronal 
restoration [137, 138]. These multifaceted strategies 
may address both the fundamental cellular 
impairments and provide relief from cognitive and 
emotional challenges. Additionally, the progress in 
brain simulation technologies, such as non-invasive 
brain stimulation and cutting-edge neuroimaging 
methods, may aid in customizing stem cell-based 
interventions [139, 140]. By outlining the individual 
patient's distinct neural networks, personalized 
therapeutic strategies can be crafted to enhance the 
effectiveness of stem cell therapies. This patient-
centered strategy, along with new biomarkers and 
neural data, would enable the development of more 
accurate, tailored treatments that improve treatment 
results. In summary, the integration of gene editing, 
stem cell treatments, pharmacological therapies, and 
cutting-edge neurotechnology has the potential to 
significantly change the landscape of SCZ treatment. 
It is crucial to conduct collaborative, multidisciplinary 
research to explore these promising pathways and 
translate them into clinical practice for enhanced 
patient care. 
 

Conclusion 

Stem cell-based therapies for SCZ represent a 
promising frontier in treatment, potentially 
addressing core neurodevelopmental and 
neurochemical deficits associated with the disorder. 
These therapies hold the potential to restore 
neurogenesis, rectify myelination issues, and improve 
synaptic function, offering the possibility of 
improving cognition, memory, and emotional 
regulation in SCZ patients. However, significant 
challenges remain, including the need for better 
understanding of cell integration, immune responses, 
and the precise mechanisms of action. Additionally, 
ethical, safety, regulatory, and cost-related issues must 
be carefully addressed to make these therapies viable 
in clinical practice. With continued research and 
technological advances, stem cell-based treatments 
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could ultimately provide a more effective and 
personalized approach to managing SCZ, but more 
work is needed before they can be widely 
implemented.   
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