
© 2025 Saeed Dhekra, et al.                                                                                                                                                                     1 

 

Enhancing Lung Cancer Drug Prediction: From Traditional 
Methods to Deep Learning 

 

Saeed Dhekra*, Huanlai Xing 
School of Computing and Artificial Intelligence, Chengdu, Sichuan, China. 

*Corresponding author: Saeed Dhekra. 
 

Abstract 
With the rapid advancements in considering artificial intelligence in medicine, precision, robustness, and reliability 
predictions are crucial for investigating cancer drug cells’ response to gene-drug interactions in lung cancer to precisely predict 
the drug response for cancer patients’ treatments. In this work, we evaluated the predictive models of a multiple regression 
model for the response of lung cancer cells to a drug. We use a Gene Expression Omnibus data set of 507 and 1496 cells with 
multiple regression techniques for feature selection to improve model performance. machine learning models including linear 
regression, decision tree regression, random forest regression, gradient boosting regression, and support vector regression and 
evaluated performance using different metrics. We also use deep learning models such as long short-term memory (LSTM), 
neural network models, graph neural networks (GNN), and ResNet-50. The performance metrics evaluated include mean 
square error (MAE), root mean square error (RMSE), and R2 score. where ResNet-50 resulted as the best model. and showed 
superior performance in all key metrics, achieving the highest R2 value and the lowest root mean square error on the test set. 
Our results highlight the potential of deep learning models to capture complex cancer cells in lung gene-drug interactions 
with excellent opportunities for improving drug response predictions. ResNet-50 demonstrated superior performance with an 
MAE of 0.0163, an RMSE of 0.0976, and an R² score of -0.0014. 
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Introduction 

Cancer kills hundreds of thousands of lives worldwide 
each year, making it a serious public health concern. 
Because of its complexity and heterogeneity, cancer 
remains lethal despite enormous improvements in 
research and medical treatments [1]. The illness is 
caused by aberrant cells that proliferate 
uncontrollably, invade healthy tissues, and then affect 
the healthy cells as well. With localized tumors to 
metastatic disease or the spread of cancer cells to other 
parts of the body, it progresses through some stages. 
While late-stage tumors require vigorous and focused 
special treatments, early-stage cancers frequently 
require more sophisticated therapies. Individualized 
care for this condition, taking into account each 
patient’s distinct genetic, biological, and medical 
requirements [2]. One of the main issues with cancer 
treatment is that patients with the same cancer mostly 
respond differently to chemotherapy due to the 
inherent het- erogeneity of cancer cells’ responses to 
the drugs they are treated with. Accurate prognosis 
depends on an understanding of tumor heterogeneity 
within and between patients. The cancers of each 

patient show distinct genetic signatures and reactions 
to treatment, highlighting the necessity for prognostic 
instruments associated with these side effects [3]. 
Precisely anticipating a patient’s reaction to therapy 
based on the molecular and clinical features of cells 
affected by cancer is essential [4]. The goal of 
customized cancer drugs is to modify care according 
to the needs of each patient to increase effectiveness 
and decrease negative effects [5]. Predicting a patient’s 
reaction to a particular cancer medication is essential 
with the customized approach. The prediction of 
treatment response in cancer has been changed by 
recent developments in computational biology and 
bioinformatics. The development of complex 
prediction models has been made easier by the 
integration of multi-omics data, such as 
transcriptomics, proteomics, metabolomics, and 
genomes. These computational models, which are 
powered by deep learning (DL) and machine learning 
(ML) algorithms, reveal the complex biological 
patterns which help with better treatment and better 
medication selection [2]. Attractive approaches to 
achieving precise predictions have been made possible 
by the development of ML and DL algorithms [4]. 
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Treatment outcomes are greatly impacted by the 
ability to forecast a patient’s response to cancer 
medications with better in terms of accuracy. which 
enables cancer treatment doctors to choose the best 
course of medication, cut down on trial-and-error 
methods, and lessen the possibility of giving 
ineffective medications. Superior outcomes for 
patients and more economical utilization of 
healthcare facilities result from this advanced cutting-
edge strategy [5]. Predicting drug responses in cancer 
treatment for several reasons is important. to create 
individualized therapy regimens that are based on 
each patient’s unique hereditary and biological profile 
of genes, which boosts therapeutic efficacy aligned 
with the historical data of cancer treatment [6]. to 
precise drug response prediction improves patient 
quality of life by preventing unsuccessful therapies 
and minimizing negative side effects of drugs. to 
improve overall healthcare efficiency by allocating 
treatments to people who will benefit from them most 
effectively in all terms [7]. 
The term personalized healthcare refers to the 
customization of medical care to meet the unique 
needs of every patient. When choosing the best 
therapy for cancer patients, this method takes into 
account the genetic, cellular, and surgical features of 
the patient’s tumour. The goal of personalized 
medicine is to minimize side effects and increase 
therapeutic benefits [8]. Even with potential 
advantages, there are a lot of difficulties in forecasting 
medication responses in cancer patients. Complexity 
is increased by the constantly changing characteristics 
of cancer and the impact of the tumour 
microenvironment [9]. Traditional ML techniques, 
including logistic regression (LR), support vector 
regression (SVR), and RFs, were used in the early 
attempts to predict how cancer responds to 
medications. to create prediction models, these 
methods concentrated on obtaining features from a 
variety of datasets, such as genomic, transcriptomic, 
and clinical data [10]. This was a seminal moment in 
the application of computational techniques to 
comprehend and forecast treatment-related responses 
from various cancer kinds according to their 
biological features. The development of DL, and in 
particular deep neural networks (DNNs), changed the 
landscape of cancer therapy prediction modelling 

dramatically. DNNs are excellent at extracting 
complicated features from raw data independently, 
eliminating the requirement for a laborious process of 
feature engineering. Furthermore, through the 
examination of tissue samples, twin convolutional 
neural networks (tCNNs) have demonstrated efficacy 
in the analysis of spatial data from histological 
pictures, allowing for predictions of treatment 
effectiveness [11]. Pengfei Liu et al., for instance, used 
the analysis of digital tumour slides to show how 
applicable tCNNs are for predicting immunotherapy 
responses in patients with colorectal cancer [12]. 
These findings highlight the development of more 
sophisticated computational methods that can handle 
complex datasets and uncover useful information for 
creating customized cancer treatment plans. In this 
study, we present a unique method that combines ML 
models for feature selection for big historical data and 
trains ML and DL-supervised learning models. By 
utilizing the relational data found in systems of cells, 
such as drug-target linkages, protein interactions, and 
genetic sequences for the lung cancer cell response 
prediction. to improve the accuracy and reduce the 
error of anticipating unique reactions to cancer 
treatments, our framework hopes to further precision 
oncology and improve outcomes of treatment for 
those diagnosed with cancer. 
 

Literature Review 

For easier multi-omics disease evaluation, 
investigators introduced Deep MOCCA. To improve 
prediction skills, this framework incorporates 
relationships between proteins and genes as well as 
transcripts and other sorts of omics data to improve 
prediction accuracy [13]. Deep MOCCA uses graph 
convolutional neural networks (CNN) to estimate 
patients’ survival durations for 33 distinct cancer 
types in individual patient data. Thanks to the 
addition of a graph attention mechanism specifically 
designed to detect driver genes and prognostic 
markers with the CNN Model, the framework 
outperforms current survival prediction approaches. 
In an- other study, cancer images are conceptualized 
as unstructured networks, which presents a novel 
CNN technique with different hidden layers and 
activation functions [14]. Through attentiveness 
mechanisms, these network visualizations are 
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combined with embedded data obtained from gene 
expression patterns. In non-human small cell lung 
cancer, in particular, this integration enhances tumor 
classification by using patient survival results and 
resulting performance from other existing studies. 
This method facilitates spatial DNA profiling by 
efficiently identifying variations in tumors through 
the use of genetic expression data and pathological 
images. researcher in another study presents a graph 
neural network method for cancer drug reaction 
(CDR) forecasting that uses comparison learning [15], 
To forecast CDR, Graph CDR makes use of drug 
chemical compositions, established reactions, and 
multi-omics profiles of cancer cells of the liver. The 
approach uses contrastive learning in a multitask 
learning framework to improve the ability to 
generalize results in various experimental conditions. 
The significance of biological characteristics, 
established cell line-drug re- actions, and contrastive 
training in attaining precise CDR predictions is 
emphasized by elimination research. An additional 
study describes the Multi-View Contrastive 
Heterogeneous Graph Attention Network 
(MCHNLDA) in their work, which aims to anticipate 
the relationships between diseases and long non-
coding RNAs (lncRNAs). MCHNLDA creates two 
different graph perspectives by utilizing a wealth of 
biological data about genes, cancer cell physical 
structure, and lncRNAs [16]. 
These perspectives enable collaboratively guiding 
graph-embedded data using cross-contrastive learning 
without the need for labelled data. To efficiently 
collect sequential structural information along meta-
paths, the model combines an LSTM network with a 
heterogeneity context-dependent Graph Attention 
Network (GAT) as part of its attention mechanism. 
The author of the recent study studied over 600 
individuals who were given immune checkpoint 
inhibitors (ICIs) utilizing ICI-net to forecast 
therapeutic responses throughout diverse types of 
cancer cells [17]. ICInet outperforms other clinical 
biomarkers for ICI responses and exhibits robust 
generalization to various kinds of cancer. Their 
algorithm selects immunotherapy-response- 
associated biomarkers and improves prediction 
accuracy in cancer; it obtains an area under the curve 
(AUC) of 0.85. MMCL-CDR (Multimodal 

Contrastive Learning for Cancer Drug Responses), a 
novel method that integrates multiple data modalities 
to predict cancer drug responses, is presented by [18]. 
By integrating DNA copy number variance, gene 
expression, cell type morphological photos, and drug 
chemical structures, MMCL-CDR boosts accuracy in 
prediction by synchronizing tumor cell lines across 
diverse data sources. Experimental results reveal 
MMCL- CDR’s advantage over existing approaches 
for forecasting cancer treatment responses. The XMR 
model, an explainable multimodal neural network 
intended for responses to drug estimation, has been 
developed by [19]. The framework incorporates a 
graph neural network (GNN) to understand drug 
structural characteristics and an external neural net- 
work for learning genetic parameters. XMR enhances 
com- prehension and provides insights into predictive 
mechanisms by predicting medication reactions based 
on gene mutations and molecular structures through 
the incorporation of a multidimensional fusion layer. 
A thorough examination of DL models to forecast 
response to single-drug therapies was carried out by 
[20], revealing common practices and difficulties in 
the field. Their analysis sheds light on how DL 
applications are doing right now for predicting 
treatment responses. To anticipate the relationships 
between miRNA and drug resistance, it suggests the 
Attentive Multimodal Graph Convolution Network 
(AMMGC) [21]. 
AMMGC considerably outperforms current strategies 
in predicting connections among resistant drugs with 
miRNAs through the acquisition of residual 
representations of medications with miRNAs through 
the convolution of graph neural net- works and an 
attention neural network. Leveraging a heterogeneous 
network framework, the study presents drGAT, the 
graph-based DL approach to drug response prediction 
[22]. By forecasting drug response results and 
clarifying the effects of drugs via attention 
coefficients, the model reaches great accuracy as well 
as precision. Utilizing numerous gene interaction 
relationships, MRNGCN is a graph convolution 
network technique for discovering cancer driver genes 
[23]. To increase node and link prediction accuracy, 
MRNGCN combines gene characteristics discovered 
using heterogeneous graph convolution networks 
with a self- attention approach. Their study presents 
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NMGMDA, a computational model that uses nuclear 
norm minimization and graph attention networks to 
predict drug-microbe interactions. Using the 
similarities between medications and microorganisms 
that are already associated with one another, 
NMGMDA derives forecasting scoring for drug-
microbe correlations [24]. research in which they use 
a network reconstruction technique to develop drug 
response forecasting as an associated forecasting issue 
among an extensive group of cells [25]. The approach 
they use demonstrates outstanding precision and 
biological significance by accurately classifying 
sensitive as well as resistant cancer cell- drug 
relationships by generating "network patterns" for 
both medicines and cell lines. A thorough analysis of 
numerous representation techniques is given in, 
which also highlights the drawbacks of each approach 
[26]. 
To provide insightful analysis for academics working 
on the subject, the article also looks at possible 
developments in these methods. To choose 
experiments that provide reaction data, which is 
essential for determining successful treatments and 
improving drug response forecasting models, look at 
a variety of active learning techniques. Their research 
shows that when it comes to finding successful 
medicines, active learning techniques typically 
perform better than a random process [27]. 
Leveraging the DL model presents shinyDeepDR, an 

online platform for computational screening of 265 
possible anti-cancer medications. ShinyDeepDR 
makes medication identification easier by letting users 
enter mutation gene expression data from cancer 
samples without requiring high- performance 
computer technical expertise [28]. The most prevalent 
kind of liver cancer, hepatic cell carcinoma, has an 
"undruggable" gene that the scientists hope is curable. 
This serves as an example of the tool’s efficacy. 
 

Materials and Methods 

To comprehensively investigate the gene expression 
changes in lung cancer cell lines treated with Gefitinib 
and Erlotinib, we utilized two publicly available 
datasets. These datasets were accessed from the Gene 
Expression Omnibus (GEO) databases GSE112274 
and GSE149383, respectively, which archive and 
freely distribute high-throughput functional genomic 
data. The datasets were analyzed to understand the 
drugs’ molecular mechanisms and identify potential 
biomarkers for drug response in non-small cell lung 
cancer (NSCLC). The study involved several steps, 
including data preprocessing, normalization, feature 
extraction, and the application of ML and DL models 
to predict drug responses based on gene expression 
profiles. The workflow diagram from the Figure 1 
illustrates the steps followed in our study. 

 

 
Figure 1: Framework Diagram. 

 
Datasets 

In this research, we employed two separate datasets to 
thoroughly examine the effects of the medications 
gefitinib and erlotinib on lung cancer cells. We made 
use of an extensive dataset that was produced from 
single-cell RNA- seq data Gene Expression Omnibus 

(GEO) datasets; particularly, GSE112274 single-cell 
RNA have 507 cells for the medicine Gefitinib [29], 
and GSE149383 includes 1496 cells for the drug 
Erlotinib for lung cancer cell lines [29]. 

Gefitinib Drug 
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The dataset is titled "Gefitinib Response in Lung 
Cancer Cell Lines" (Accession Number: GSE112274) 
[29]. The dataset GSE112274 is accessed from 
GSE112274 on GEO and is a public repository 
database for next-generation sequencing and other 
forms of high-throughput functional genomic data 
submitted by the scientific community. This focuses 
on gene expression changes in lung cancer cell lines 
treated with Gefitinib, an EGFR tyrosine kinase 
inhibitor used for treating non-small cell lung cancer 
(NSCLC). The organism studied is Homo sapiens 
(Human), and the plat- form used is an Affymetrix or 
Illumina gene expression array, with specific platform 
details available on the GEO page. The primary 

objective of the study is to investigate the gene 
expression changes induced by Gefitinib treatment. 
The dataset comprises 507 samples, with 200 samples 
rep- resenting lung cancer cell lines treated with 
Gefitinib being sensitive to the drug and the 
remaining samples serving as control cell lines treated 
with the drug being resistant, as shown in Figure 2. 
The samples in the dataset include both treated and 
control groups, providing a comprehensive view of 
the gene expression changes associated with Gefitinib 
treatment. The dataset allows researchers to compare 
treated and untreated samples to identify 
differentially expressed genes and potential 
biomarkers for drug response from Table 1. 

 

 
Figure 2: GEFITINIB Drug Distribution. 

 
Table 1: Gefitinib Response in Lung Cancer Cell Lines dataset. 

Group Number of Cells 
Treated (Gefitinib) 254 

Control 253 
Total 507 

 
Erlotinib Drug 

The dataset Lung Cancer Cells, with GEO Accession 
Number GSE149383 given the drug Erlotinib, 
focuses on investigating the gene expression changes 
in lung cancer cells treated with Erlotinib, an EGFR 
tyrosine kinase inhibitor used in the treatment of non-
small cell lung cancer (NSCLC) [29]. Our primary 
objective is to investigate the gene expression changes 

treated by the Erlotinib drug. The dataset comprises a 
total of 1,496 cells given in Figure 3. The samples in 
the dataset include both treated and control groups, 
providing a comprehensive view of the gene 
expression changes associated with Erlotinib 
treatment. The dataset allows researchers to compare 
treated and untreated samples to identify deferentially 
expressed genes and potential biomarkers for drug 
response from Table 2. 
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Figure 3: Expression Level Comparison of TSPAN6. 

 
Table 2: Erlotinib Response in Lung Cancer Cell Lines dataset. 

Group Number of Samples 
Treated (Erlotinib) 748 

Control 748 
Total 1496 

 
Data Visualization 

Genes Data Expression Levels 

The expression levels of the TSPAN6 gene in 
comparison to a different gene in are shown Figure 3. 
The x-axis sample gene names are categorized into 
"Parental" and "High AF" groups [30]. while the y-axis 
represents the expression level in FPKM (Fragments 
Per Kilobase Million) units is the normalized counts 
[31]. The TSPAN6 gene is the protein encoded as a 
member of the transmembrane 4 superfamily. High 
AF gene samples exhibit significantly higher TSPAN6 
gene levels compared to the Parental. This suggests 
that the TSPAN6 gene is up-regulated in the High AF 
group. The PC9_HIGH_AF_S67 in Figure 3 

exceptionally high TSPAN6 expression level and is an 
outlier in the data set. The single nucleotide 
polymorphisms of the tenomodulin gene (TNMD) 
[32] expression levels between the parental and high-
AF groups differ significantly, as seen in Figure 4. 
These instances show the existence of distributions 
with outliers and unsuitable distributions for 
modelling. To overcome these problems, we need to 
commence our investigation with thorough data pre-
processing. The gene spread in the data set is shown 
in Figure 5-7. The word cloud’s analysis of the genes 
and clusters offers important hints regarding the 
pathways in the data that reflect most frequently in 
the data. 

 

 
Figure 4: Expression Level Comparison of TSPAN6. 
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Figure 5: Resistance/Sensitivity Distribution for GEFITINIB and ERLOTINIB Drugs. 

 

 
Figure 6: Analyzing the Gene Word Cloud of the dataset. 

 

 
Figure 7: Expression Level Comparison. 

 
Expression 

In the comparison of two parental level genes, 
PC9_parental_GEF_S12 and 
PC9_parental_GEF_S29, we found a weak positive 
correlation between the expression levels of the 
PC9_parental_GEF_S12 and 

PC9_parental_GEF_S29 genes. Most of the data 
points cluster in the lower left corner and have 
relatively low expression levels for both genes. from 
Figure 8. Some points are located away from the main 
cluster, which are the outliers in the expression 
patterns. 

 

 
Figure 8: Gene Network Diagram. 
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Data Prepossessing 

Data preprocessing is a critical step in preparing raw 
data for analysis, ensuring that it is in a suitable 
format for effective modelling and interpretation. 
Our study meticulously processed the gene expression 
data from the GSE112274 and GSE149383 datasets 
to enhance data quality and reliability. This process 
involved several key stages, including handling 
missing values, normalizing and scaling features, 
encoding categorical variables, and partitioning the 
data into training and testing sets. Each stage was 
carefully executed to address potential issues and 
ensure the data was robust and well-suited for 
subsequent ML and DL analyses. Through these 
preprocessing techniques, we aimed to optimize the 
performance of our predictive models and derive 
meaningful insights from the gene expression profiles. 
The Gene Interaction Network is the interaction 
between various genes in the data set. Each node in 
the network represents a gene, and the lines 
connecting the nodes indicate relationships between 
them in Figure 9. The key observation from the Gene 
Interaction Network is that the network is relatively 
dense, with many genes interconnected and complex. 
UGT3A2 and SYCPI genes have a large number of 

connections. These genes are considered hubs in the 
network and play central roles. The network has 
distinct clusters of genes that are more closely 
connected. This indicates functional modules within 
the biological system of lung cells. OLR1 and ESM1 
genes have relatively few connections and are located 
on the periphery of the network. These genes might 
play more specialized roles in the biological processes 
of the lungs. The interactions and interdependence 
between the genes of interest are revealed in great 
detail by examining the gene interaction networks. 
The grouped trends, hub existence, and dense 
interconnected point to a complex and networked 
biological system. Important genes, operational 
modules, and putative regulatory mechanisms 
involved in the basic biological processes are 
identified by investigating the network in further pre-
processing of the dataset. We use the Min Max Scaler 
as a scaling technique to normalize our features by 
transforming them to a common scale. We map the 
input data to a fixed range between 0 and 1, 
preserving the probability distribution of the data set. 
We scale our data set features by using Equation (1). 

Xscaled =
Xoriginal −  Xmin

Xmax –  Xmin
 

 

 
Figure 9: Erlotinib Feature Distribution. 

 
Where 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled value. original value 
𝑋𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 of the feature. is the 𝑋𝑚𝑖𝑛 minimum 
value of data features. is the 𝑋𝑚𝑎𝑥 maximum value 
in the feature data points. 

Xtransformed = Xscaled × (max − min) + min 

Where from the Equation (2), 𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 is the 
transformed value to a specific range. and (𝑚𝑎𝑥 − 
𝑚𝑖𝑛) is the desired range we use [0, 1] and the 𝑚𝑖𝑛 is 
the minimum value, our minimum value is 0. 
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Y =
X − Xmini

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
× (max − min) + min 

From the Equation (3), 𝑌 is the normalized value 𝑋 is 
the original value 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum 
and maximum values of the original data. (𝑚𝑎𝑥 − 
𝑚𝑖𝑛) range [0, 1]. 
We replace the absent values, generally known as 
(NaN), with the mean of the feature values to 
eliminate them. The feature’s average of all data 
values is used to replace NaN values by applying the 
mean replacement technique. we calculate the mean 
for filling of NaN values. 

mean𝑖 =
∑ xijNi

j=1

𝑁𝑖
 

Where mean 𝑖 is the mean of the 𝑖th feature. 𝑥𝑖𝑗 is 
the 𝑗th value of the 𝑖th feature. 𝑁𝑖 is the number of 
non-missing values in the 𝑖th feature from the 
Equation (4). 
The correlations among ERLOTINIB and the PLP1 
and ESM16 parameters are shown in a 3D scatter plot 
in Figure 9. The arrangement of data points and 
cluster features provides relationships and grouping 
among the data set. 

Feature Selection 

Our feature selection methodology combined 
principal component analysis (PCA) with RF-based 
feature significance to extract the most relevant 
features from the gene expression linked to lung 
cancer treatment response. This process has 
significance for reducing the dimensionality of the 
data because it was previously difficult to handle and 
resulted in the overfitting of models due to the 
abundance of gene expression variables. We started by 
performing PCA on the entire dataset to extract the 
largest variance within the data into fewer 
components. This procedure helped to transform the 
original high-dimensional data into a lower 
dimensional space. Much of the volatility in the gene 
expression data was explained once the dataset was 
reduced to 50 key elements. Following the PCA, we 
used an RF classifier to assess feature importance. The 
classifier was trained on the scaled dataset, and the 
importance of each feature was determined by 
analyzing its performance. We reduced the original 
dataset to the top 50 most important characteristics 
using the RF model’s relevance scores. Figure 10 
displays the top 10 influencing factors, which are 
PLP1, ESM1, PRSS1, SERPINB3, PHOX2B, KRT6A, 
ROBO2, Index, CYTIP, and PASD1. 

 

 
Figure 10: The top 10 features. 

 
Figure 11 ranks the top 50 features based on their im- 
portance in a machine-learning model. The x-axis 
shows the importance and the y-axis names of the 

features. Dominant Features are ROBO2, PLP1, 
ESM1, and PRSS1 have higher importance and play a 
crucial role in the predictions. 
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Figure 11: Most important feature with score. 

 

Analysis of correlations in Figure 12 a relationship 
between two variables is represented by each square in 
the matrix, and the strength and direction of the link 
are shown by the color’s intensity. White squares 
indicate no association at all, blue squares indicate a 
negative correlation and red squares indicate a 

positive correlation. A strong positive association can 
be seen in dark red. The relationship is moderately 
positive when it is light red. Bella, that is 
unimportant. There is a somewhat negative 
association seen in light blue. A considerable negative 
association exists with dark blue. 

 

 
Figure 12: Correlation Matrix Heat map. 

 

PCA of the association among erlotinib and gefitinib medication trends and Figure 13. Color variations and 
clustering arrangements indicate that these medications have varying effects on gene expression. 
 

 
Figure 13: Analyzing PCA of ERLOTINIB and GEFITINIB. 
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ML & DL Models for Drug Response 

Prediction 

We analyzed and predicted medication responses on 
lung cancer cell gene expression using ML and DL 
models. We employ LR, DT, RF, GB, and SVR 
models in machine learning for this. LSTM, NN, 
GNN, and ResNet-50 are used in DL. They work 
incredibly well at managing intricate relational data 
and deriving insightful patterns from inputs. Such 
models are chosen to make it easier to fully 
understand the molecular pathways in cells with lung 
cancer that are connected to the medications erlotinib 
and gefitinib. 
Machine learning Models 

For the GSE112274 dataset, we are predicting the 
response to Gefitinib drug response treatment. The 
model equations are as follows Objective Function 
Equation (5). 

LGefitinib(ϕ) = ∑ l(yi, ŷi)

507

𝑖=1

+ ∑ Ω(fk)

K

k=1

 

The objective function for Gefitinib. Summation over 
all 507 data points. Equation (6) The loss function 
measures the difference between the true value 𝑦𝑖 and 
the predicted value. The regularization term for the 𝑘-
th tree 𝑓𝑘. Summation of overall 𝐾 trees in the model. 

∑ l(yi, ̂y i)̂y i ∑ Ω(fk)

𝑘

k=1

507

i=1

 

Loss Function for the Model Equation (7). 

l𝐺𝑒𝑓𝑖𝑡𝑖𝑛𝑖𝑏(yi, ̂y i) =
1

2
(𝑦𝑖 − ̂𝑦 𝑖)2 

𝑙Gefitinib(𝑦𝑖,̂𝑦 𝑖) in the loss function for Gefitinib. 12 
is A constant factor for normalization. (𝑦𝑖−̂𝑦𝑖)2 is the 
squared difference between the true value 𝑦𝑖 and the 
predicted value ̂ 𝑦 𝑖. Regularization Term Equation 
(8). 

ΩGefitinib(f) = γT +  
1

2
λ ∑ wj

2

T

j=1

 

 
ΩGefitinib(𝑓) The regularization term for Gefitinib. 
𝛾𝑇 is the complexity of the model, where 𝛾 is a 
regularization parameter and 𝑇 is the number of trees 

in the Equation (8). 
1

2
λ ∑ wj

2
T

j=1
 is the sum of the 

squared weights 𝑤𝑗 of the trees, with 𝜆 being a 
regularization parameter. 

ŷ𝑖
(m)

=  ŷ𝑖
(m−1)

+ 𝑓𝑚(𝑥𝑖) 

Tree Structure ŷ𝑖
(m) is the prediction for the 𝑖-th data 

point at the 𝑚-th iteration Equation (9). ŷ𝑖
(m−1) is the 

prediction for the 𝑖-th data point at the (𝑚 − 1)-th 
iteration? 𝑓𝑚(𝑥𝑖): The 𝑚-th tree’s prediction for the 𝑖-
th data point. 
Deep Learning Model 

We use DL models, including LSTM, neural 
networks, graph neural networks, and graph attention 
neural networks (GANN), to predict the drug 
response for the lung cancer cell response. the neural 
network architectures that leverage the attention 
mechanism to perform node classification tasks on 
graph-structured data. Below are the equations and 
details of how these models are applied to both the 
GSE112274 and GSE149383 datasets. 
 

Forget Gate: 𝑓𝑡 = σ(𝑓𝑡) 
Input Gate: 𝑖𝑡 = σ(𝑖𝑡) 
Cell State Update: 𝑐𝑡 =  𝑓𝑡𝑜𝑐𝑡=1 +  𝑖𝑡𝑜𝑐𝑡

′ 
Output Gate: 𝑜𝑡 = σ(𝑜𝑡) 
Hidden State Update: ℎ𝑡 = 𝑜𝑡𝑜𝑡𝑎𝑛ℎ(𝑐𝑡) 
Candidate Cell State: 𝑐𝑡

′ =  𝑡𝑎𝑛ℎ(𝑢𝑡 𝑥𝑡  + 𝑊𝑡 ℎ𝑡−1) 
Final Output: 𝑦𝑡 = ℎ𝑡 
 

Where 𝜎 is the sigmoid activation function 
respectively. shows the Equation (10) is the key 
equations of the LSTM model, for the 𝑓𝑡, 𝑖𝑡, 𝑜𝑡 are 
the forget, - 𝑐𝑡 is the cell state at time t, -𝑥𝑡 is the input 
at time t, and output gates cell state update, -ℎ𝑡 is the 
hidden state at time t, - 𝑢𝑡, 𝑊𝑡 are weight matrices, 
candidate cell state calculation, and final output 
generation. 
Neural Network (NN) (11) 

𝑦 = 𝑓 (𝑋; 𝜃) 
𝑓 (⋅) = 𝜎(𝑊1𝑋 + 𝑏1) 
𝑋′ = 𝜎(𝑊2𝑋′ + 𝑏2) 
 

Table 3: ResNet-50 Parameters. 
Parameters Value 

Total Parameters 8,316,421 
Trainable Parameters 2,771,905 

Non-Trainable Parameters 704 
Optimizer Parameters 5,543,812 

 

Graph Neural Network (GCN) (12) 

𝐻(l+1) = σ (D− 
1
2 𝐴𝐷− 

1
2 𝐻(l) Θ(l)) 

Graph Attention Network (GAT) (13) 
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aij = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (α𝑖𝑗
𝑇  ℎ𝑖‖ℎ𝑗) 

α𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑖) 

ℎ𝑖 = ∑ α𝑖𝑗

𝑗∈𝑁(𝑖)

𝑊ℎ𝑗  

ℎ𝑖
(l+1)

= 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 ( ∑ α𝑖𝑗

𝑗∈𝑁(𝑖)

𝑊ℎ𝑗
(l)) 

 

Where 𝑦 is the output of the LSTM Model from the 
Equation 11. 𝜎 is the activation function used in all 
models 𝑓 (⋅) represents the network architecture we 
use in all DL models 𝑊 and 𝑏 are weights which are 
the same in all models and biases are fine-tuned by the 
feedback loop. 𝑋 is the input. 𝐻(l) is the hidden state 
at layer 𝑙 remain different in all models. 𝐷, and 𝐴 are 
degree matrix and adjacency matrix. α𝑖𝑗 are attention 
coefficients. 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 is the leaky rectified linear 
unit activation function used in the NN models 
Equation 12 and Equation 13. 

ResNet-50 Model 

We fine-tuned the last 20 layers of ResNet-50 for the 
single-cell drug response prediction following the 
input layers total layers use is 6. Input Shape = 
(𝑋𝑡𝑟𝑎𝑖𝑛_𝑠𝑐𝑎𝑙𝑒𝑑. 𝑠ℎ𝑎𝑝𝑒 [2]), with output dense layers 
following the other hyperparameters of: 
Activation Functions= ReLU 
Batch Normalization = Yes 
Dropout Rate = 0.5 
Optimization Algorithm = Adam 
Learning Rate = 0.001 
Batch Size = 32 
Epochs = 100 
Validation Split = 0.2 
Early Stopping Patience = 10 

Reduce LR Factor = 0.5 
Min Learning Rate = 0.00001 
 

Results 

We analyzed several ML and DL models to forecast 
treatment response using single-cell RNA-seq data on 
lung cancer. For every model, the performance 
measures were evaluated, which included mean 
absolute error (MAE), root mean squared error 
(RMSE), and 𝑅2 score. Our findings are. The LR 
model has a mean absolute error of 0.0152, a root 
means square error of 0.0846, and an 𝑅2 score of 
0.1593. The LR Model concluded comparatively low 
MAE and RMSE, and its 𝑅2 score suggested an 
average match between the predicted outcome and 
the actual data. The Decision Tree Regressor (DT) has 
an MAE of 0.0122, an RMSE of 0.1099., and a 𝑅2 
score of -0.2688. Among all models, the Decision Tree 
Regressor had the least MAE; nevertheless, it also 
showed a high RMSE and a poor 𝑅2 score, showing 
low efficacy for the drug response prediction. RF with 
a moderate performance of MAE 0.0132, RMSE 
0.0944, and 𝑅2 score close to zero (0.0643) concludes 
limited predictive power. Gradient Boosting 
Regressor (GB) from Table 4 showed similar 
performance to the RF slightly lower 𝑅2 score. Model 
Support Vector Regressor (SVR) performed poorly 
with the highest value of MAE and RMSE, a 
significantly negative 𝑅2 score. The best model among 
all ML models is the DT, which performs better 
gaming than all models. The neural network for 
single-cell lung cancer prediction gives better 
performance compared to the LSTM but a relatively 
high value of 0.4126 of MAE and 1.1726 of RMSE, 
with a substantially negative 𝑅2 score of -143.4178. 

 

Table 4: Performance Metrics of Machine Learning Regression Models. 
Model MAE RMSE R2 Score 

LR 0.015166 0.084622 0.159252 
DT Regressor 0.012168 0.109916 -0.268844 
RF Regressor 0.013182 0.094387 0.064344 
GB Regressor 0.012639 0.101226 -0.076152 
SV Regressor 0.091570 0.118818 -0.482702 
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Figure 14: GNN. 

 

The LSTM Model drug response data is in the table. 
With the lowest 𝑅2 score and high MAE and RMSE 
among the all models from Table 5, it is less effective 
for the drug response prediction. The lowest MAE of 
the three metrics indicates that the LSTM model’s 
predictions are frequently quite close to the actual 
values, but the RMSE is higher than the MAE. On the 

other hand, the 𝑅2 score indicates that the model is 
not the perfect prediction for the drug response, as 
also shown from the training and testing performance 
of improvement for the data variation. Figure 15 
shows the performance measures of the model 
indication model loss curve during the training phase 
model learns accurately but fails during testing. 

 

Table 5: Performance Metrics of DL Models. 
Model MAE RMSE R2 Score 
LSTM 0.4643 3.7906 -1508.0187 

Neural Network 0.4126 1.1726 -143.4178 
GNN 0.0654 0.3416 -11.2562 

ResNet-50 0.0163 0.0976 -0.0014 
 

 
Figure 15: LSTM Performance. 

 

Although their poor 𝑅2 score, graph neural networks 
outperform DL and ML models in terms of MAE and 
RMSE. The training as well as validation loss curve 
for the GNN model are shown in Figure16. The 
number of iterations is shown on the x-axis, while the 
level loss is shown on the y-axis of the graph. The line-
colored orange represents a validation loss result, and 

the line of blue represents the result of training loss. 
The model’s beginning training losses drop off 
sharply, and this is promptly followed by an unstable 
period. the outcome of GNNs’ complex and the 
significance of fitting the model to the graph’s 
architecture. The approach has stabilized and is not 
overfitted, as seen by the convergence of the training 
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and validation losses. It seems that the general loss 
estimation is rather large when compared to other 
models. This may suggest that the chosen framework 

and hyperparameters are subpar or that the GNN is 
having difficulty identifying deeper patterns within 
the data. 

 

 
Figure 16: GNN Model Loss Curve. 

 

The training and prediction losses of the ResNet-50 
algorithm are shown in Figure 17. The horizontal axis 
displays the number of iterations of the model we 
train on; we use 100 iterations for each model and 
early stop optimization to stop the model training 
when reaching the most optimized evaluation metrics, 
while the vertical y-axis shows the loss of training and 
validation. The blue line, which decreases as the 
model learns from the training data, represents the 
learning loss. The orange line evaluation loss of the 

model performance on test data. The result of 𝑅2 
values is close to zero, which is a fair prediction 
between actual and forecasted values indicated by 𝑅2 
values of -0.0014. The model does not seem flawless 
and does not adapt effectively to the new data, since 
training and prediction losses seem to be constant. In 
general, ResNet-50 produced the best outcomes in 
terms of generalization and prediction accuracy for 
the future of cancer cell reactions given the drug. 

 

 
Figure 17: ResNeT 50. 

 

To sum up our results, the role of ideas is 
demonstrated by early forecasting of drug response by 
fine-tuning the ReNet-50 model with total parameters 
of 83 million, including the trainable parameters of 
27 million. The models outperform all the DL and 
ML, having the lowest RMSE and MAE as well as the 
best 𝑅2 score, which is comparatively decent. 
However, the low performance of LSTM and neural 
network models indicates that they might not be 
appropriate for the current task and dataset. These 
results demonstrate the possibility of enhancing and 
broadening the range of therapeutic approaches for 
predicting drug responses in lung cancer. The results 
show that different models perform differently. The 

results of LR show an 𝑅2 score of 0.1593, RMSE of 
0.0846, and MAE of 0.0152. The decision tree 
regressor performed poorly with an 𝑅2 score of -
0.2688, RMSE of 0.1099, and MAE of 0.0122. The 
gradient boosting regressor and the RF regressor 
performed comparably, with 𝑅2 scores of -0.0762 and 
0.0643, respectively. The least efficient regression 
model is the SVR, with an 𝑅2 score of -0.4827 and an 
MAE of 0.0916. On the other hand, advanced models 
show varying degrees of effectiveness. LSTMs, neural 
networks, and graph neural networks show higher 
errors and lower 𝑅2 scores compared to classical 
models. ResNet-50’s 𝑅2 score is -0.0014, RMSE is 
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0.0976, MAE is 0.0163, and RMSE is 0.0976, 
showing significantly better performance. 
 

Conclusion 

Our studies highlight that the fine-tuning ResNet-50 
model has the potential to predict drug responses for 
single- cell RNA big data in a more sophisticated 
evaluation metric with less computational power than 
the other complex approaches of ML and DL. This 
study lays the groundwork for future implementations 
focused on treatment strategies while offering 
significant new insights into the effectiveness of drug 
response forecasting. 
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