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Introduction 

The 4-Colour Theorem states that every map can be 
colored using only four colors and no two adjacent 
regions have the same color. The initial problem was 
first posed in the mid-19th century by Francis 
Guthrie. Guthrie noticed that four colors were 
sufficient to color the map, and he wondered if this 
was true for every map. Many mathematicians 
attempted to solve the problem, but rigorous 
mathematical proof remained elusive. It became one 
of the most famous mathematical problems of the 
20th century and Kenneth Appel and Wolfgang 
Haken finally solved computer-aided proof in 1976. 
This proof was considered controversial due to the 
extent of the computer assistance required. The 4-
Colour Theorem has important applications in real-
world situations, such as in scheduling and 
timetabling problems. It also demonstrates the power 
and elegance of mathematical reasoning, as well as the 
importance of collaboration and innovation in 
solving complex problems. 
We describe a specific class of graphs (see Appendix 
A) called Standard Graphs (SG), which are 
constructed by the Expanded Operations e(+, pi) and 
e(-, pi), which are used to replace planar graphs since 
they may have a significant number of unsaturated 
links and lack uniformity. The Proof begins with 
"Triangulations of Euler Convex Polygons": convex 
polygons can be sliced into multiple triangles (Euler 
obtains the famous Catalan Number [2] by counting 
the number of triangulations of convex polygons [3]). 
In this article, we defined all the possible 

triangulations sets of convex polygons (denoted by 
"bound") as "All Phase States (AP)". If the boundary of 
any Standard Graph (SG) is All Phase States (AP) and 
4-colorable, the 4-Colour Theorem will be 
established. Unfortunately, the All Phase States (AP) 
property of the boundary cannot keep Invariance 
during the Expanded Operation e(+, pi) (denoted by 
"IEO"), which implies that the All Phase States (AP) 
property is incomplete. Thus, the boundary of the 
Standard Graph must have a cryptic property that can 
satisfy both the All Phase States (AP) and IEO. Finally, 
I find that the Standard Graph's boundary satisfies 
3CP and 4-colorable (denoted by "4-3CP") and it is 
proven 4-3CP is IEO. This article's primary goal is to 
attest the Standard Graph’s boundary J(m) and all its 
sub-bounds set {J(m’)} are 4-3CP. 
 

Bound 

Set a cycle C(Pm, Lm), Pm = {p1, p2, ···, pm}, Lm = 
{p1p2, p2p3,···,pm-1pm, pmp1}, m ≧ 3, cycle C 
divides the plane into two connected domain: inside 
and outside, then we call the cycle C be a bound (see 
Figure 1), denoted by J(m) or J(Pm). 
|J(m)| = m is the number of points of J(m), ||J(m)|| 
= m is the number of links of J(m). There are two types 
of link: real link "—" (p1-p2, p2-p3,···) and virtual link 
"···" (p1···p4, p3···p5, ···) although the two points 
aren’t linked by a real link, the virtual link is existed 
between them cause they are colored differently. 
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Figure 1: Bound 

 
Set a bound J(m), we get points set Pm’ ⊆ Pm to form 
some new bounds J(m’), J1, J2, ···, (without cut links 
and loops), which are called sub-bounds of J(m). The 
J(m’), J1, J2, ··· is sub-bounds set {J(m’)} of J(m). The 
sub-bounds set {J1, J2, ···} is called com-bound J (m’) 
= J(m)-J(m’) = J1 + J2 + ··· of J(m’) in J(m). 

 

All Phase States 

We defined a triangulation of convex polygons as a 
link state and provided samples of J(3)-J(7) in Table 1. 
If the bound J(m) contains all link states, we call J(m) 
all phase states (AP). The all-link states number of 

J(m+2) is C(m) = 1
1

𝑚+1
𝐶2𝑚

𝑚 (C(m)is Catalan 

Number). 
Set {J(m’)} be a sub-bound set of J(m), it is simple to 
demonstrate that all of the sub-bounds set {J(m’)} are 
AP if and only if J(m) is AP. The sub-bounds set {J(m’)} 
is AP, which means that the sub-bound J(m’) ∈ {J(m’)} 
is AP and independent. 

 

 
Table 1: Link states of J(3)-J(7). 
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Table 2: An example of the 3-Colour All Phase States (3CP). 

 
The 3-Colour All Phase States (3CP) 

Let J(Pm) be the boundary of Standard Graph SG (see 
Figure 2), Y is the colouring solution set family of 
J(Pm), if Y can make the bound J(Pm) be AP and ∃ 
3Y∈ Y, we call J(Pm) 3-Colour All Phase State (3CP). 
An example of 3CP is provided bellow (Table 2): 

If we have enough time to test all of the Standard 
Graph conditions, we will discover that the boundary 
of every Standard Graph is 3CP and 4-colorable. It's 
exciting that this regularity was discovered for the first 
time and the 4-3CP invariance can naturally derive 
the 4-Colour Theorem. 
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Figure 2: J(Pm) of SG 

  

The 4-3CP Conjecture 

The conjecture is described as follows: 
4-3CP Conjecture: ∀ standard graph SG, J(m) is the 
boundary of SG, let Y is the coloring solution set 
family of J(m), {J’(m)} is sub-bounds set of J(m), Y can 
make: 

(1) |Y| ≦ 4, 
(2) J(m) be 3CP, 
(3) {J’(m)} be 3CP, 
(4) ∃ a 3-colour solution set 3Y(J’(m)) and { 𝐽’ 

(m)}be 3CP, 
(5) Let x, p1, p2 ∈ J’(m), link x-p1, x-p2 form sub-

bounds J’1(x-p1), J’2(x-p2), and 𝐽’1 +  𝐽’2, if x 
scans on p1→p2, ∃ 3Y(J’1+ J’2) and 
𝐽’1 +  𝐽’2 is 3CP. 

 

Proof 

By Exhaustive Method, it’s easy to see: 
 

 

 
1. Element e = SG(1), J(3) conform to 4-3CP 

Conjecture. 
2. SG(2), J(4) conform to 4-3CP Conjecture. 
3. SG(3), J(3) conform to 4-3CP Conjecture. 

 
Set a Standard Graph SG, the boundary J(Pm) of SG, 
the coloring solution set family Y of J(Pm), |Y|≦4, 
J(Pm) and it’s sub-bounds J(Pm’) conform to the 4-
3CP Conjecture. Then add an element e(ade) (points 
a, d, e form a triangle) on the J(Pm) to form a new 
boundary denoted by J(a + Pm) = J(Pm) + e(ade) (d, e 
∈ J(Pm), d-e, a is new). According to the Points 
Scanning Method (see Appendix C), it’s easy to prove 
J(a + Pm) is 3CP and 4-colorable, so 4-3CP Conjecture 
(2) is proven. 
Next, we shall prove the sub-bounds set {J(a + Pm’)} of 
J(a + Pm) is 3CP and 4-colorable: When |Y| = 3, 
J(Pm) is AP equals to J(Pm) is 3CP. Since J(Pm) is AP, 
so the sub-bounds set {J(Pm’)} is AP, and Y(J(Pm’)) ∈ 
Y, |Y(J(Pm’)) | = |Y| = 3, so {J(Pm’)} is 3CP. 
Then we shall prove when |Y| = 4, the sub-bounds 
set {J(a + Pm’)} of J(a + Pm) is 3CP. 
 

When the new point a ∈ 3-colour sub-bound of 
J(a+Pm) 

Take any n points Pn = {p1, p2, p3, ···, pn} ⊆ Pm, link 
p1-p2, p2-p3, ···, pn-1-pn, form (n-1) sub-bounds J(p1-
p2), J(p2-p3), ···, J(pn-1-pn), and take any point x, 
x∈Pn, x ≠ p1, pn, link x with p1, pn form two sub-
bounds J(x→pn) and J(p1→x); link x with d, e form 
J(x→pnd), J(x→ep1) and e(xde) (see Figure 3).

 

 
Figure 3: a ∈ 3-colour sub-bound of J(a + Pm), a = x. 

 
According to J(Pm) and the sub bounds of J(Pm) are 
4-3CP: J(p1-p2), J(p2-p3), ···, J(pn-1-pn) and J(x→pn), 
J(p1→x) and J(x→pnd), J(x→ep1), e(xde) are 3CP. 
According to 4-3CP Conjecture, when x scans on Pn 
(x ≠ p1, pn), the colouring solution set family Y(Pn) 

(Y(Pn) ∈ Y) must have a 3-colouring solution set 
3Y(Pn) make J(p1-p2), 
J(p2-p3), ···, J(pn-1-pn) and J(x→pnd), J(x→ep1), 
e(xde) are 3CP. 
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If y(a) = y(x), 3Y(Pn) will make |Y(J(a + Pn))| = 3 and 
make J(a→pnd), J(a→ep1) and J(p1-p2), J(p2-p3), ···, 
J(pn-1-pn) are 3CP, which means {J(a + Pn)} are 3CP. 

So, ∃ a 3-colouring solution set 3Y(J(𝑎 +  𝑃𝑛)) make 
{(J𝑎 +  𝑃)𝑛} be 3CP. 
4-3CP Conjecture (4) is proven. 

 

When the new point a ∉ 3-colour sub-bound of J(a + Pm) 

 

 
Figure 4: a ∉ 3-colour sub-bound of J(a + Pm). 

 
Since point a ∉ 3-colour sub-bound of J(a + Pm), we 
shall to prove all sub-bound J(a + Pm’) with point a 
are AP. Take any n + 2 points Pn = {d, e, p1, p2, p3, 
···, pn} ⊆ Pm, link e-p1, p1-p2, p2-p3, ···, pn-1-pn, pn-
d, form (n + 2) sub-bounds J(p1-p2), J(e-p1), J(p2-p3), 
···, J(pn-1-pn), J(pn-d) and J(a + Pn). (See Figure 4) 
According to the boundary J(Pm) and the sub bounds 
of J(Pm) are 3CP: J(Pn), J(e-p1), J(p1-p2), J(p2-p3), ···, 
J(pn-1-pn), J(pn-d) are 3CP, ∃ 3-colouring solution set 
3Y(J(Pn)) ∈ Y, make {J(Pn)} be 3CP. According to the 
Points Scanning Method: If y(a) ∉ 3Y(J(Pn)) and y(a) 
∈ Y, J(a + Pn) is AP, so all sub-bound J(a + Pm’) with 
point 

a are AP. 
Sum up 5.1.1, 5.1.2, we can see 4-3CP Conjecture (3) 
is proven. 
 

Proof of 4-3CP Conjecture (5) 

Set Pm’ ⊆ Pm, Pm’ divide J(m) into m’ parts, let x is a 
point between p1→p2 (x ≠ p1, p2) on J(m), we call p1, 
p2 are fixed points, x is scanning point. Link x-p1, x-
p2, ···, x-pm’, form sub-bounds set {Ji(x) | x ∈ Ji(x), 
i=1, 2, ···, m’} of J(m). (Assume m’ = 5, see Figure 5).

 

 
Figure 5: sub-bounds set {Ji(x) | x ∈ Ji(x), Ji(x) ∈ J1, ···, J6} of J(m). 

 
According to 4-3CP Conjecture (5), when x scans on 
p1→p2, ∃3Y(J1+ J2), and J3, ···, Jm’, Jm’+1 are 3CP. 
Then add a new point a on J(m), when point a is on 
J1, J2, ∃ y(a) ∈ Y(J1(x) + J2(x)), keep |Y(J1(x) + J2(x))| 
= 3, and J3, ···, Jm’, Jm’+1 are 3CP; when point a is 

on J3, ···, Jm’, Jm’+1, ∃ y(a) ∈ Y, keep J3, ···, Jm’, 
Jm’+1 are 3CP; when point a is a fixed point as p1, 
p2, we also could prove that, when x scans on p1→p2, 
∃ 3Y(J1+ J2), and J3, ···, Jm’, Jm’+1  are 3CP (we will 
prove in detail in next article), so J(m + a) can keep 
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when x scans on p1→p2, ∃ 3Y(J1+ J2), and J3, ···, Jm’, 
Jm’+1 are 3CP. So 4-3CP Conjecture (5) is proven. 
So Y(a + m) can make: 
(1) |Y(a + m)| = |Y| ≦ 4, 
the bound J(a + m) be 3CP, 
∀ sub-bounds set {J’(a + m)} be 3CP, 
∃ a 3-colour solution set 3Y(J’(a + m)), and { J’(a+m)} 
be 3CP. 
Let x, p1, p2 ∈ J’(a+m), link x-p1, x-p2 form sub-
bounds J’1(x-p1), J’2(x-p2), J’1 + J’2, if x scans on 
p1→p2, ∃ 3Y(J’1+ J’2) and J’1 + J’2 is 3CP. 
Above all, we have proven 4-3CP Invariance during 
the Expanded Operation e(+, 
pi), It’s easy to see 4-3CP Invariance during the 
Expanded Operation e(-, pi) is also true. 
So, 4-3CP Conjecture is proven! 
 

Conclusion 

The major research objects are the boundary’s 
invariance property of Standard Graph in this work. 

By creating the Standard Graph via Expanded 
Operations e(+, pi) and e(-, pi), the complexity of the 
planar graph is reduced. By examining the Invariance 
during Expanded Operations (IEO) of Standard 
Graph, huge calculation for coloring planar graph are 
avoided. Based on the above optimization method, we 
have demonstrated a rigorous proof of the 4-Colour 
Theorem, which can be also used to optimize complex 
systems. 
 

References 

1. J.A. Bondy, U.S.R Murty. (2008). Graph Theory 
(Graduate Texts in Mathematics), Springer. 

2. H.W. (1971). Gould, Research bibliography on 
two special number sequences. Mathematica 
Monongalia, 12. 

3. Jesús A. De Loera et al. (2010). Triangulations, 
Algorithms and Computation in Mathematics. 
Springer-Verlag Berlin Heidelberg.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://bioresscientia.com/
https://scholar.google.com/scholar?q=related:8oDNzGFb4UMJ:scholar.google.com/&scioq=J.A.+Bondy,+U.S.R+Murty.+(2008).+Graph+Theory+(Graduate+Texts+in+Mathematics),+Springer.&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=related:8oDNzGFb4UMJ:scholar.google.com/&scioq=J.A.+Bondy,+U.S.R+Murty.+(2008).+Graph+Theory+(Graduate+Texts+in+Mathematics),+Springer.&hl=en&as_sdt=0,5
https://cir.nii.ac.jp/crid/1130290061349180963
https://cir.nii.ac.jp/crid/1130290061349180963
https://cir.nii.ac.jp/crid/1130290061349180963
https://link.springer.com/chapter/10.1007/978-3-642-12971-1_1
https://link.springer.com/chapter/10.1007/978-3-642-12971-1_1
https://link.springer.com/chapter/10.1007/978-3-642-12971-1_1


Clinical Case Reports and Studies                                          ISSN:2837-2565                                        BioRes Scientia Publishers 

© 2023 Jun Wang.                                                                                                                                                                                     7 

Appendix A: Definition Table (Table 3) 

 
  
Appendix B 
Axiom system: 
Axiom 1: On 2D plane or spherical surface, any 
planar graph without cut links and 
loops are standard graph SG(n) or sub-graph SG(n’) 
of SG(n). 
 
Theorem system: 
 

4-3CP Conjecture: ∀ standard graph SG, J(m) is the 
boundary of SG, let Y is the coloring solution set 
family of J(m), {J’(m)} is sub-bounds set of J(m), Y can 
make: 
 
(1) |Y| ≦ 4, 
(2) J(m) be 3CP, 
(3) {J’(m)} be 3CP, 
∃ a 3-colour solution set 3Y(J’(m)) and {J ’(m)} be 3CP, 
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Let x, p1, p2 ∈ J’(m), link x-p1, x-p2 form sub-bounds 
J’1(x-p1), J’2(x-p2), and 
J’1 +  J’2, if x scans on p1→p2, ∃ 3Y(J’1+ J’2) and 
J’1 +  J’2is 3CP. 
 
Inference system: 
Inference 1: If the bound J(m) is AP, the sub-bounds 
sets {J(m’)} of J(m) must be AP and independent with 
each other. 
Inference 2: If bound J(m) is 4-3CP, J(m) can be 
extended infinitely by e(+, pi) and e(-, pi). 
Inference 3: The coloring solution set {Y(n)} of 
standard graph SG(n) is also the solution set of sub-
graph SG(n’) of SG(n). 
Inference 4: The element e can be extended infinitely 
outward and inward by e(+, pi) and e(-, pi), and the 
outward and inward coloring solution are 
independent. 
 
Appendix C 
Two important methods: 
Points Scanning Method: we set a bound J(m) and a 
point x ∈ Pm, let x ∉ Pn, Pn ⊂ Pm, Pn = {p1, p2, p3, 
···, pn, d, e} (d-x, e-x), m ≧ 3, 0 ≦ n ≦ m-3, link x with 
Pn, the bound J(m) is AP if and only if ∀ Pn, the sub-
bound J1, J2, J3,···, Jn+1 are AP (see Figure 6). 
The all link states number of this structure is C(|J1| 
- 2) × C(|J2| - 2) × C(|J3| - 2) × ··· × C(|Jn+1| - 2). 
 

 
Figure 6: J(m) Points Scanning Method 

 
Links Scanning Method: we set bound J(m), let a, d, e 
(d-e) ∈ Pm, m ≧ 3, a ≠ d, a ≠ e, form an element e(ade) 
and com-bound J(e) = J(m1) + J(m2), the bound J(m) 
is AP if and only if ∀ a, the com-bound J(e) of e(ade) 
is AP (see Figure 7). 
The all link states number of this structure is C(m1 - 
2) × C(m2 - 2). 
 

 
Figure 7: J(m) Links Scanning Method 
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