Research Article

Open d Access

A Pure Mathematical Proof of the 4-Colour Theorem

Jun Wang

Master of condensed matter physics of Sun Yat-sen University, China.

Abstract

This work "A Pure Mathematical Proof of the 4-Colour Theorem" is related to the previous proof assisted by computer. "Triangulations of Euler Convex Polygon" provides a fresh beginning point for the proof. The central concept is to discover an extended invariance property of Standard Graph's boundary, which is described as "3-Colour All Phase States (3CP)" in this work and it is demonstrated that the Standard Graph's boundary and sub-bound are 3CP and 4-colorable (4-3CP) via the Expanded Operation e(+, pi) and e(-, pi). It's exciting that this regularity was discovered for the first time and the 4-3CP invariance can naturally derive the 4-Colour Theorem. The majority of the definitions, theorems and proof strategies are shown in this work.

Keywords: 4-colour theorem; standard graph; bound; sub-bound, 3CP, e(+, pi), e(-, pi), triangulations

Introduction

The 4-Colour Theorem states that every map can be colored using only four colors and no two adjacent regions have the same color. The initial problem was first posed in the mid-19th century by Francis Guthrie. Guthrie noticed that four colors were sufficient to color the map, and he wondered if this was true for every map. Many mathematicians attempted to solve the problem, but rigorous mathematical proof remained elusive. It became one of the most famous mathematical problems of the 20th century and Kenneth Appel and Wolfgang Haken finally solved computer-aided proof in 1976. This proof was considered controversial due to the extent of the computer assistance required. The 4-Colour Theorem has important applications in realworld situations, such as in scheduling and timetabling problems. It also demonstrates the power and elegance of mathematical reasoning, as well as the importance of collaboration and innovation in solving complex problems.

We describe a specific class of graphs (see Appendix A) called Standard Graphs (SG), which are constructed by the Expanded Operations e(+, pi) and e(-, pi), which are used to replace planar graphs since they may have a significant number of unsaturated links and lack uniformity. The Proof begins with "Triangulations of Euler Convex Polygons": convex polygons can be sliced into multiple triangles (Euler obtains the famous Catalan Number [2] by counting the number of triangulations of convex polygons [3]). In this article, we defined all the possible triangulations sets of convex polygons (denoted by "bound") as "All Phase States (AP)". If the boundary of any Standard Graph (SG) is All Phase States (AP) and the 4-Colour Theorem will 4-colorable, be established. Unfortunately, the All Phase States (AP) property of the boundary cannot keep Invariance during the Expanded Operation e(+, pi) (denoted by "IEO"), which implies that the All Phase States (AP) property is incomplete. Thus, the boundary of the Standard Graph must have a cryptic property that can satisfy both the All Phase States (AP) and IEO. Finally, I find that the Standard Graph's boundary satisfies 3CP and 4-colorable (denoted by "4-3CP") and it is proven 4-3CP is IEO. This article's primary goal is to attest the Standard Graph's boundary I(m) and all its sub-bounds set {J(m')} are 4-3CP.

Bound

Set a cycle C(Pm, Lm), Pm = {p1, p2, …, pm}, Lm = {p1p2, p2p3,…,pm-1pm, pmp1}, m \ge 3, cycle C divides the plane into two connected domain: inside and outside, then we call the cycle C be a bound (see Figure 1), denoted by J(m) or J(Pm).

|J(m)| = m is the number of points of J(m), ||J(m)|| = m is the number of links of J(m). There are two types of link: real link "—" (p1-p2, p2-p3,···) and virtual link "···" (p1···p4, p3···p5, ···) although the two points aren't linked by a real link, the virtual link is existed between them cause they are colored differently. ISSN:2837-2565

Set a bound J(m), we get points set Pm' \subseteq Pm to form some new bounds J(m'), J1, J2, …, (without cut links and loops), which are called sub-bounds of J(m). The J(m'), J1, J2, … is sub-bounds set {J(m')} of J(m). The sub-bounds set {J1, J2, …} is called com-bound J (m') = J(m)-J(m') = J1 + J2 + … of J(m') in J(m).

All Phase States

We defined a triangulation of convex polygons as a link state and provided samples of J(3)-J(7) in Table 1. If the bound J(m) contains all link states, we call J(m) all phase states (AP). The all-link states number of J(m+2) is C(m) = $1\frac{1}{m+1}C_{2m}^m(C(m))$ Catalan Number).

Set {J(m')} be a sub-bound set of J(m), it is simple to demonstrate that all of the sub-bounds set {J(m')} are AP if and only if J(m) is AP. The sub-bounds set {J(m')} is AP, which means that the sub-bound J(m') \in {J(m')} is AP and independent.

Clinical Case Reports and Studies

The 3-Colour All Phase States (3CP)

Let J(Pm) be the boundary of Standard Graph SG (see Figure 2), Y is the colouring solution set family of J(Pm), if Y can make the bound J(Pm) be AP and \exists 3Y \in Y, we call J(Pm) 3-Colour All Phase State (3CP). An example of 3CP is provided bellow (Table 2):

If we have enough time to test all of the Standard Graph conditions, we will discover that the boundary of every Standard Graph is 3CP and 4-colorable. It's exciting that this regularity was discovered for the first time and the 4-3CP invariance can naturally derive the 4-Colour Theorem.

The 4-3CP Conjecture

The conjecture is described as follows:

4-3CP Conjecture: ∀ standard graph SG, J(m) is the boundary of SG, let Y is the coloring solution set family of J(m), {J'(m)} is sub-bounds set of J(m), Y can make:

- (1) $|Y| \leq 4$,
- (2) J(m) be 3CP,
- (3) {J'(m)} be 3CP,
- (4) \exists a 3-colour solution set 3Y(J'(m)) and { $\overline{J}'(m)$ } be 3CP,
- (5) Let x, p1, p2 \in J'(m), link x-p1, x-p2 form subbounds J'1(x-p1), J'2(x-p2), and $\overline{J'1 + J'2}$, if x scans on p1 \rightarrow p2, \exists 3Y(J'1+ J'2) and $\overline{J'1 + J'2}$ is 3CP.

Proof

By Exhaustive Method, it's easy to see:

- 1. Element e = SG(1), J(3) conform to 4-3CP Conjecture.
- 2. SG(2), J(4) conform to 4-3CP Conjecture.
- 3. SG(3), J(3) conform to 4-3CP Conjecture.

Set a Standard Graph SG, the boundary J(Pm) of SG, the coloring solution set family Y of J(Pm), $|Y| \leq 4$, J(Pm) and it's sub-bounds J(Pm') conform to the 4-3CP Conjecture. Then add an element e(ade) (points a, d, e form a triangle) on the J(Pm) to form a new boundary denoted by J(a + Pm) = J(Pm) + e(ade) (d, e \in J(Pm), d-e, a is new). According to the Points Scanning Method (see Appendix C), it's easy to prove J(a + Pm) is 3CP and 4-colorable, so 4-3CP Conjecture (2) is proven.

Next, we shall prove the sub-bounds set {J(a + Pm')} of J(a + Pm) is 3CP and 4-colorable: When |Y| = 3, J(Pm) is AP equals to J(Pm) is 3CP. Since J(Pm) is AP, so the sub-bounds set {J(Pm')} is AP, and Y(J(Pm')) \in Y, |Y(J(Pm'))| = |Y| = 3, so {J(Pm')} is 3CP.

Then we shall prove when |Y| = 4, the sub-bounds set {J(a + Pm')} of J(a + Pm) is 3CP.

When the new point $a \in 3$ -colour sub-bound of J(a+Pm)

Take any n points Pn = {p1, p2, p3, …, pn} \subseteq Pm, link p1-p2, p2-p3, …, pn-1-pn, form (n-1) sub-bounds J(p1-p2), J(p2-p3), …, J(pn-1-pn), and take any point x, x \in Pn, x ≠ p1, pn, link x with p1, pn form two sub-bounds J(x→pn) and J(p1→x); link x with d, e form J(x→pnd), J(x→ep1) and e(xde) (see Figure 3).

According to J(Pm) and the sub bounds of J(Pm) are 4-3CP: J(p1-p2), J(p2-p3), ..., J(pn-1-pn) and J(x \rightarrow pn), J(p1 \rightarrow x) and J(x \rightarrow pnd), J(x \rightarrow ep1), e(xde) are 3CP. According to 4-3CP Conjecture, when x scans on Pn (x \neq p1, pn), the colouring solution set family Y(Pn)

 $(Y(Pn) \in Y)$ must have a 3-colouring solution set 3Y(Pn) make J(p1-p2),

J(p2-p3), ..., J(pn-1-pn) and J(x \rightarrow pnd), J(x \rightarrow ep1), e(xde) are 3CP.

So, $\exists a 3$ -colouring solution set $3Y(J(\overline{a + P_n}))$ make $\{(J\overline{a + P})_n\}$ be 3CP.

4-3CP Conjecture (4) is proven.

When the new point a \notin 3-colour sub-bound of J(a + P_m)

Since point a \notin 3-colour sub-bound of J(a + Pm), we shall to prove all sub-bound J(a + Pm') with point a are AP. Take any n + 2 points Pn = {d, e, p1, p2, p3, ..., pn} \subseteq Pm, link e-p1, p1-p2, p2-p3, ..., pn-1-pn, pn-d, form (n + 2) sub-bounds J(p1-p2), J(e-p1), J(p2-p3), ..., J(pn-1-pn), J(pn-d) and J(a + Pn). (See Figure 4) According to the boundary J(Pm) and the sub bounds of J(Pm) are 3CP: J(Pn), J(e-p1), J(p1-p2), J(p2-p3), ..., J(pn-1-pn), J(pn-d) are 3CP, \exists 3-colouring solution set 3Y(J(Pn)) \in Y, make {J(Pn)} be 3CP. According to the Points Scanning Method: If y(a) \notin 3Y(J(Pn)) and y(a) \in Y, J(a + Pn) is AP, so all sub-bound J(a + Pm') with point

a are AP.

Sum up 5.1.1, 5.1.2, we can see 4-3CP Conjecture (3) is proven.

Proof of 4-3CP Conjecture (5)

Set Pm' \subseteq Pm, Pm' divide J(m) into m' parts, let x is a point between p1 \rightarrow p2 (x ≠ p1, p2) on J(m), we call p1, p2 are fixed points, x is scanning point. Link x-p1, x-p2, …, x-pm', form sub-bounds set {Ji(x) | x ∈ Ji(x), i=1, 2, …, m'} of J(m). (Assume m' = 5, see Figure 5).

According to 4-3CP Conjecture (5), when x scans on $p1 \rightarrow p2$, $\exists 3Y(J1+J2)$, and J3, ..., Jm', Jm'+1 are 3CP. Then add a new point a on J(m), when point a is on J1, J2, $\exists y(a) \in Y(J1(x) + J2(x))$, keep |Y(J1(x) + J2(x))| = 3, and J3, ..., Jm', Jm'+1 are 3CP; when point a is

on J3, …, Jm', Jm'+1, $\exists y(a) \in Y$, keep J3, …, Jm', Jm'+1 are 3CP; when point a is a fixed point as p1, p2, we also could prove that, when x scans on p1 \rightarrow p2, $\exists 3Y(J1+J2)$, and J3, …, Jm', Jm'+1 are 3CP (we will prove in detail in next article), so J(m + a) can keep

Clinical Case Reports and Studies

ISSN:2837-2565

when x scans on $p1 \rightarrow p2$, $\exists 3Y(J1+J2)$, and $J3, \dots, Jm'$, Jm'+1 are 3CP. So 4-3CP Conjecture (5) is proven. So Y(a + m) can make: (1) $|Y(a + m)| = |Y| \leq 4$, the bound J(a + m) be 3CP, \forall sub-bounds set {J'(a + m)} be 3CP,

 \exists a 3-colour solution set 3Y(J'(a + m)), and $\{J'(a+m)\}$ be 3CP.

Let x, p1, p2 \in J'(a+m), link x-p1, x-p2 form subbounds J'1(x-p1), J'2(x-p2), J'1 + J'2, if x scans on p1 \rightarrow p2, \exists 3Y(J'1+ J'2) and J'1 + J'2 is 3CP.

Above all, we have proven 4-3CP Invariance during the Expanded Operation e(+,

pi), It's easy to see 4-3CP Invariance during the Expanded Operation e(-, pi) is also true.

So, 4-3CP Conjecture is proven!

Conclusion

The major research objects are the boundary's invariance property of Standard Graph in this work.

By creating the Standard Graph via Expanded Operations e(+, pi) and e(-, pi), the complexity of the planar graph is reduced. By examining the Invariance during Expanded Operations (IEO) of Standard Graph, huge calculation for coloring planar graph are avoided. Based on the above optimization method, we have demonstrated a rigorous proof of the 4-Colour Theorem, which can be also used to optimize complex systems.

References

- 1. J.A. Bondy, U.S.R Murty. (2008). Graph Theory (Graduate Texts in Mathematics), Springer.
- 2. H.W. (1971). Gould, Research bibliography on two special number sequences. Mathematica Monongalia, 12.
- **3.** Jesús A. De Loera et al. (2010). Triangulations, Algorithms and Computation in Mathematics. Springer-Verlag Berlin Heidelberg.

Appendix A: Definition Table (Table 3)

Definition	Samples	Definition Description
int (P)	• p	A country or area in a graph, P(G) is called point set of graph(G).
ink (l)	$p_1 \rightarrow p_2 p_1 \frown p_2$	The relationship between two adjacent points $\{p_1, \ p_2\}$, $L(G)$ is called link set of graph(G).
lement (e)	d∆ae	For the point set $P = \{a, d, e\}$, a, d, e link with each other form a K^3 , we call it is an element e(ade) , E(G) is elements set of graph(G).
ound m)	p _m p ₁ p ₂ p ₃	Set a graph $G(P_m, L_m)$, $P_m = \{p_1, p_2, \dots, p_m\}$, $L_m = \{p_1p_2, p_2p_3, \dots, p_{m-1}p_m, p_mp_1\}$, $m \ge 3$, where the points p_1, p_2, \dots, p_m are all distinct and form a cycle C^m , then the cycle C^m is called a bound $J(m)$ or $J(P_m)$. $ J(m) = m$ is number of points of $J(m)$, $ J(m) = m$ is number of links of $J(m)$.
ub-bound J(m') om-bound m')	J(m) J ₁ J(m [*]) J ₂	Set a bound $J(P_m)$, we get points set $P_{m'} \subseteq P_m$ form a new bound $J(P_{m'})$ or $J(m')$, which is called sub-bound of $J(P_m)$. We call $J(m')$, J_1 , J_2 , \cdots (without cut links and loops) is sub-bound set { $J(m')$ } of $J(P_m)$. The bound set { J_1, J_2, \cdots } is called com-bound $J(\overline{m'}) = J(m) - J(m') = J_1$ $+ J_2 + \cdots$ of $J(m')$ in $J(m)$.
(+, p _i)	d + e	The operation of adding a element e(ade) to the bound J(P _m) to become a new bound J(m + a) or J(P _m + a) (d, $e \in P_m$, d-e). $ J(P_m + a) - J(P_m) = 1$. We denote this bound expanded operation as $e(+, p_i)$, $p_i = d \in P_m$
-, pi)	d J(Pm) e	The operation of removing a point a from the bound $J(P_m)$ to become a new bound $J(m - a)$ or $J(P_m - a)$ (a, d, $e \in P_m$, d-a, a-e). $ J(P_m - a) - J(P_m) = -1$. We denote this bound expanded operation as $e(-, p_i)$, $p_i = d \in P_m$
tandard Graph G/ ubgraph SG'	M(n)	The graphs constructed by $e(+, p_i)$ and $e(-, p_i)$ is standard graph (SG) , SG(n) = $\sum_{i=1}^{n} e(\pm, p_i)$, n is the number of e. we call Y is the colouring solution set family of boundary J(m) of SG(n), Y is chromatic number of J(m), the 3-colouring solution set of Y denote by $3Y$, $ 3Y = 3$. m = $ e(+, p_i) - e(-, p_i) + 2$; The standard graph SG removed some links (red links) is subgraph SG(n') .
ll Phase States P)	14 link states of $J(6)$	All link states without cut link of the bound J(m) are called all phase states (AP). The all phase states number of J(m+2) is $\frac{1}{m+1}C_{2m}^m = C(m)$, (C(m) is Catalan Number)
Colour ll Phase States CP)	J(m) 3CP J(m [*]) 3CP/3CP	Let $J(P_m)$ be a bound, Y is the colouring solution set family of $J(P_m)$, $\exists Y \leq 4$, Y must have 3Y and Y can make the bound $J(P_m)$ be AP, we call $J(P_m)$ is 3-Colour All Phase State (3CP).

Appendix B

Axiom system:

Axiom 1: On 2D plane or spherical surface, any planar graph without cut links and

loops are standard graph SG(n) or sub-graph SG(n') of SG(n).

Theorem system:

4-3CP Conjecture: \forall standard graph SG, J(m) is the boundary of SG, let Y is the coloring solution set family of J(m), {J'(m)} is sub-bounds set of J(m), Y can make:

(1) |Y| ≤ 4,
(2) J(m) be 3CP,
(3) {J'(m)} be 3CP,
∃ a 3-colour solution set 3Y(J'(m)) and {J '(m)} be 3CP,

Clinical Case Reports and Studies

ISSN:2837-2565

Let x, p1, p2 \in J'(m), link x-p1, x-p2 form sub-bounds J'1(x-p1), J'2(x-p2), and

 $\overline{J'1 + J'2}$, if x scans on p1 \rightarrow p2, $\exists 3Y(J'1+J'2)$ and $\overline{J'1 + J'2}$ is 3CP.

Inference system:

Inference 1: If the bound J(m) is AP, the sub-bounds sets $\{J(m')\}$ of J(m) must be AP and independent with each other.

Inference 2: If bound J(m) is 4-3CP, J(m) can be extended infinitely by e(+, pi) and e(-, pi).

Inference 3: The coloring solution set $\{Y(n)\}$ of standard graph SG(n) is also the solution set of subgraph SG(n') of SG(n).

Inference 4: The element e can be extended infinitely outward and inward by e(+, pi) and e(-, pi), and the outward and inward coloring solution are independent.

Appendix C

Two important methods:

Points Scanning Method: we set a bound J(m) and a point $x \in Pm$, let $x \notin Pn$, $Pn \subset Pm$, $Pn = \{p1, p2, p3, \dots, pn, d, e\}$ (d-x, e-x), $m \ge 3, 0 \le n \le m-3$, link x with Pn, the bound J(m) is AP if and only if \forall Pn, the subbound J1, J2, J3,..., Jn+1 are AP (see Figure 6). The all link states number of this structure is C(|J1| - 2) × C(|J2| - 2) × C(|J3| - 2) × ... × C(|Jn+1| - 2).

Links Scanning Method: we set bound J(m), let a, d, e (d-e) \in Pm, m \geq 3, a \neq d, a \neq e, form an element e(ade) and com-bound J(e) = J(m1) + J(m2), the bound J(m) is AP if and only if \forall a, the com-bound J(e) of e(ade) is AP (see Figure 7).

The all link states number of this structure is $C(m1 - 2) \times C(m2 - 2)$.

Cite this article: Wang J. (2023). A Pure Mathematical Proof of the 4-Colour Theorem. *Clinical Case Reports and Studies*, BioRes Scientia Publishers. 3(2):1-8. DOI: 10.59657/2837-2565.brs.23.068

Copyright: © 2023 Jun Wang, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Article History: Received: September 04, 2023 | Accepted: September 28, 2023 | Published: October 05, 2023